## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **1-10** of **33**

This is an activity about satellite flight. Learners will first watch a video about the orbit and formation of the MMS satellites to learn about their flight configuration. After, they will research similar facts about other types of satellites.... (View More) Next, learners will compute the volume of MMS' tetrahedral flight configuration and investigate how the tetrahedral volume changes as the satellites change positions. Finally, they will create a report that outlines their findings.This activity requires student access to internet accessible computers. This is lesson three as part of the MMS Mission Educator's Instructional Guide. (View Less)

This is a collection of mathematics problems relating to the moons of the solar system. Learners will use simple proportional relationships and work with fractions to study the relative sizes of the larger moons in our solar system, and explore how... (View More) temperatures change from place to place using the Celsius and Kelvin scales. (View Less)

This is an activity about solar energy. Learners will first use computers to research and learn how solar panels convert sunlight into electricity. Next, they will calculate the surface area of solar panels board a satellite and their total power... (View More) generated in various positions of the satellite, given the dimension of the panels. After, learners will organize and write a report summarizing the information about the MMS mission satellites. This activity requires student access to internet accessible computers. This is lesson four as part of the MMS Mission Educator's Instructional Guide. (View Less)

This activity allows participants to build a paper model of the GPM Core Observatory and learn about the technology the satellite uses to measure precipitation from space. Directions explain how to cut, fold and glue the individual pieces together... (View More) to make the model. The accompanying information sheet has details about the systems in the satellite including the Dual-frequency Precipitation Radar (DPR), the GPM Microwave Imager (GMI), the High Gain Antenna, avionics and star trackers, propulsion system and solar array, as well as a math connection and additional engineering challenges. (View Less)

Materials Cost: 1 cent - $1 per group of students

This is a lesson about the solar wind, Earth's magnetosphere, and the Moon. Participants will work in groups of two or three to build a model of the Sun-Earth-Moon system. They will use the model to demonstrate that the Earth is protected from... (View More) particles streaming out of the Sun, called the solar wind, by a magnetic shield called the magnetosphere, and that the Moon is periodically protected from these particles as it moves in its orbit around the Earth. Participants will also learn that the NASA ARTEMIS mission is a pair of satellites orbiting the Moon that measure the intensity of solar particles streaming from the Sun. (View Less)

This book contains 24 illustrated math problem sets based on a weekly series of space science problems. Each set of problems is contained on one page. The problems were created to be authentic glimpses of modern science and engineering issues, often... (View More) involving actual research data. Learners will use mathematics to explore problems that include basic scales and proportions, fractions, scientific notation, algebra, and geometry. (View Less)

During the last sunspot cycle between 1996-2008, over 21,000 flares and 13,000 clouds of plasma exploded from the Sun's magnetically active surface. These events create space weather. Students will learn more about space weather and how it affects... (View More) Earth through reading a NASA press release and viewing a NASA eClips video segment. Then students will explore the statistics of various types of space weather storms by determining the mean, median and mode of a sample of storm events. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

During the last sunspot cycle between 1996-2008, over 21,000 flares and 13,000 clouds of plasma exploded from the Sun's magnetically active surface. Students will learn more about space weather through reading a NASA press release and viewing a NASA... (View More) eClips video segment. Then students will explore the statistics of various types of space weather storms by determining the mean, median and mode of different samples of storm events. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will learn about the twin STEREO spacecraft and how they are being used to track solar storms through reading a NASA press release and viewing a NASA eClips video segment. Then students will examine data to learn more about the frequency... (View More) and speed of solar storms traveling from the Sun to Earth. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will use NASA's Global Climate Change website to research five of the key indicators (vital signs) of Earth’s climate health. These indicators are: global surface temperature, carbon dioxide concentrations, sea level, Arctic sea ice, and... (View More) land ice. They will use this information, shared in their expert groups, to create an informative poster about their assigned key indicator. The poster will be used by other groups to learn about all five of the key indicators and how Earth scientists use these indicators to analyze changes in Earth’s climate. The lesson plan uses the 5E instructional sequence. (View Less)