## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **21-30** of **63**

In these activities, students investigate how gamma ray bursts emit energy in beams (as opposed to emitting light in all directions) and investigate the implications of this on the total number of gamma ray bursts seen in the universe. This activity... (View More) uses Gamma-ray Bursts as an engagement tool to teach selected topics in physical science and mathematics. In addition, the guide features background information, assessment information, student worksheets, extension and transfer activities, and detailed information about the physical science and mathematics content standards for grades 9-12. This is Activity 4 of 4 in the guide which accompanies the educational wall sheet, titled Angling for Gamma-ray Bursts. (View Less)

This interactive, online module allows students to discover the velocity needed to escape the Earth's gravitational pull. By completing this activity, students discover how mathematics can be used to find escape velocity. Students may complete this... (View More) activity independently or in small groups. Detailed teacher pages, identified as Teaching Tips on the title page, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. This module is a subsection of "Is a Black Hole Really A Hole?". It is within the online exploration No Escape: The Truth about Black Holes available on the Amazing Space website. (View Less)

In this interactive, online activity, bias is explored when the students decide which of several sampling methods are biased. They see how bias affects the percentage of irregular galaxies determined to be in the sample from the Deep Field. After... (View More) completing this activity students will be able to analyze and identify sampling methods that reduce bias. Student may work independently or in small groups to complete each activity. This activity is apart of the online exploration, Galaxy Hunter. Detailed teacher pages, identified as Teaching Tips on the title pages of the activity, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. (View Less)

In this interactive, online activity students elect a simple random sample to draw conclusions from data as presented in the Hubble Deep Field-North and Hubble Deep Field-South images. The optimal sample size is determined by exploring sample... (View More) variability, which is introduced through a min/max plot. The mean and median are added in order to pinpoint the spot where variability settles down and the measures of central tendency approach a constant value. The point where that first occurs is the smallest reasonable sample size. Students may work independently or in small groups to complete each activity. This interactive online activity is apart of the online exploration "Galaxy Hunter." Detailed teacher pages, identified as Teaching Tips on the title pages of the activity, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. Use sample variability to determine optimal sample size. (View Less)

In this assessment activity, students generate a data sample from either the Hubble Deep Field-North or Hubble Deep Field-South images, and compare the sample to data from the unselected field. This provides students with a real-life example of how... (View More) statistics can be used by scientists. After completing this activity students will be able to compare sample data with the population parameter to determine accuracy of sampling techniques and use statistical data to make conjectures about the universe. This interactive online activity is part of the online exploration “Galaxy Hunter”. Detailed teacher pages, identified as Teaching Tips on the title pages of the activity, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. (View Less)

This lesson is comprised of three parts grouped to enable student understanding of classifying organisms. In part one of the lesson, students classify imaginary organisms represented by a mix of breakfast cereals, candies, nuts, raisins, etc.... (View More) according to similar characteristics. Students use a flow chart to show the characteristics by which they divided the imaginary organisms into groups. In part two, students classify a series of single-celled organisms using a dichotomous key. In part 3, students apply skills acquired from the previous activities to create a dichotomous key for their specimens from the first activity. These activities are part of an astrobiology guide called the "Fingerprints of Life" which contains background information for the student, worksheets, extension activities, suggested assessments, and alignment to standards. (View Less)

This lesson is comprised of four parts grouped to enable student appreciation of the importance making accurate scientific observations, descriptions, and drawings. In part one, The Truth is Out There, students describe an object given to them by... (View More) their instructor to illustrate the importance of good descriptive skills in scientific observation. In part two, Who Knows?, students attempt to draw and identify a creature based on another student’s description which will emphasize that detailed accuracy is necessary. In part three, Tell It Like It Is!, students make new descriptions, using accurate observations and measurements of what they see. In part four, Truth Revealed, students assess the completeness of the more detailed descriptions. These activities are part of an astrobiology guide called the "Fingerprints of Life" which contains background information for students, worksheets, extension activities, suggested assessments, and alignment to standards. (View Less)

In this activity, students solve exponential equations where the unknown is contained in the exponent. Students learn that taking base-10 or base-2 logs pulls down the exponent, allowing the unknown to be isolated and solved. This activity is... (View More) activity C3 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students convert antilogs to logs, and logs to antilogs using scientific notation as an intermediate step. They will thereby develop a look-up table for solving math problems by using logarithms. This is activity D2 in the "Far Out... (View More) Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity, students construct base-two slide rules that add and subtract base-2 exponents (log distances), in order to multiply and divide corresponding powers of two. Students use these slide rules to generate both log and antilog equations,... (View More) learning to translate one in terms of the other. This is activity C1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)