You are here
Home ›Narrow Search
Now showing results 11-20 of 31
In this lesson, students will explain CRaTER's purpose and how it works. They will also design (using paper and pencil) a cosmic ray detector to answer their own questions. CRaTER's purpose is to identify safe landing sites for future human missions... (View More) to the moon; discover potential resources on the Moon; and characterize the radiation environment of the Moon. The lesson includes background information for the teacher, questions, and information about student preconceptions. This is lesson 4 of 4 from "The Cosmic Ray Telescope for the Effects of Radiation." (View Less)
In this lesson on cosmic rays, students will explain two examples of a cosmic ray detector. Includes information about student preconceptions and a demonstration that requires a geiger counter and optional access to a small radioactive source that... (View More) emits energetic helium nuclei (alpha particles), e.g., the mineral the mineral autunite, which contains uranium. This is activity two of four from The Cosmic Ray Telescope for the Effects of Radiation (CRaTER). (View Less)
This is a lesson about determining planetary composition. Learners will use a reflectometer to determine which minerals are present (from a set of knowns) in a sample of Mars soil simulant. Requires the use of ALTA II spectrometers (which may be... (View More) borrowed from the Lunar and Planetary Institute or purchased online) and Mars soil simulant. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
In this lesson, students will learn how cosmic rays were discovered and what they are - including their size and speed. Includes background information for the teacher, questions, activities and information about student preconceptions. This is... (View More) lesson 1 of 4 from "The Cosmic Ray Telescope for the Effects of Radiation (CRaTER)." (View Less)
In this lesson about cosmic rays, students will describe why cosmic rays are dangerous to astronauts. Includes information about student preconceptions. This is activity 3 of 4 from The Cosmic Ray Telescope for the Effects of Radiation (CRaTER).
This is a lesson about detecting atmospheres of planets. Learners will explore stellar occultation events (by interpreting light curves) to determine if an imaginary dwarf planet "Snorkzat" has an atmosphere. The activity is part of Project Spectra,... (View More) a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
This is an activity about detecting elements by using light. Learners will develop and apply methods to identify and interpret patterns to the identification of fingerprints. They look at fingerprints of their classmates, snowflakes, and finally... (View More) "spectral fingerprints" of elements. They learn to identify each image as unique, yet part of a group containing recognizable similarities. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
This is a lesson about the electromagnetic spectrum. Learners begin by arranging a set of picture cards; in the discussion afterwards, this activity is related to the electromagnetic spectrum as an arrangement of energy waves. Next, using a... (View More) clothesline to model a logarithmic scale, they add in the electromagnetic spectrum. Finally, learners conduct several simple tests to detect other types of radiation. This activity requires access to a sunny outdoor location and the use of ultraviolet light-sensitive beads. (View Less)
This series of curriculum support materials explores how our understanding of the nature of the universe has changed during the past 100 years. Students examine the process of science through the stories of the people and the discoveries that caused... (View More) our understanding to evolve from a static universe to a universe whose expansion is accelerating. The series illustrates the nature of science by tracing the process of discovery from the confirmation of Einstein's theory of gravity, to Hubble's evidence for the expanding universe, to the detection of the microwave background, and finally to the discovery of dark energy. The series includes six posters, each resembling the front page of a newspaper from a particular time in this history with articles describing the discoveries. Each poster is accompanied by an online teacher guide and downloadable, inquiry-based lessons. Downloadable newsletter versions of the poster are available for individual student use, with three editions for different reading levels (Early Edition for grade 7-8, Home Edition for grades 9-10, and Late Edition for grades 11-12). Lesson plans can be found by following the link from Teacher Resources to Curriculum Tools to the Sortable Table of Lessons. (View Less)
In this lesson, students simulate an experiment in which the discovery of dark energy can be made by plotting modern supernova distances on a Hubble Diagram. Data is provided in an Excel spreadsheet (see related resources). In order to complete this... (View More) activity, students should be familiar with Hubble's Law and the concepts of absolute luminosity, apparent luminosity, and Doppler shift (particularly redshift). This activity can be done using either a computer graphing program or manually with graph paper. This lesson is part of the "Cosmic Times" teacher's guide and is intended to be used in conjunction with the 2006 Cosmic Times Poster. (View Less)