You are here
Home ›Now showing results 1-10 of 11
This is an activity about electromagnetism and the Sun. First, learners will do a KWL activity using six vocabulary words. Next, they will build an electromagnet and investigate how it works. Finally, learners will relate the workings of their... (View More) electromagnet to a Solar Dynamics Observatory magnetogram image of the Sun. Per group of learners, this activity requires materials such as a length of insulated wire, alligator clips, a 2-D-battery holder, two D-batteries, and a nail. (View Less)
This is an activity about magnetism. Learners will experiment using horseshoe and bar magnets along with various materials in order to identify the effects of magnets on each other and on other materials. This is the third activity as part of the... (View More) iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
This is an activity about magnetic fields. Learners will use various magnets, magnetic film, and a compass to see and illustrate what magnetic fields look like. This is the fourth activity as part of the iMAGiNETICspace: Where Imagination,... (View More) Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
Learners will explore different ways of displaying visual spectra, including colored "barcode" spectra, like those produced by a diffraction grating, and line plots displaying intensity versus color, or wavelength. Students learn that a diffraction... (View More) grating acts like a prism, bending light into its component colors. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
In this inquiry exploration, student design an experiment to test the absorption of heat by different earth materials. Materials required include plastic water bottles, soil, sand, water, thermometers, lamp with 60 watt bulb, and stopwatch. This... (View More) activity is part of the MY NASA DATA Scientist Tracking Network unit, designed to provide practice in accessing and using authentic satellite data. (View Less)
This is an activity about magnetic induction. Learners will induce a flow of electricity in a wire using a moving bar magnet and measure this flow using a galvanometer, or Am meter. Through discussion, this activity can then be related to magnetic... (View More) fields in nature. This activity requires use of a galvanometer, bar or cow magnet, and wire. This is the fifth lesson in the second session of the Exploring Magnetism teacher guide. (View Less)
This is an activity about electromagnetism. Learners will set up a simple circuit using a battery, wire, and knife switch, and then use a compass to map the magnetic field lines surrounding the wire. Next, they will add a coil of wire to the simple... (View More) circuit and map the magnetic fields again. This is the second lesson in the second session of the Exploring Magnetism teachers guide. (View Less)
This is an activity about electromagnetism. Learners will use a simple circuit powered by a battery source to investigate the strength of the magnetic field produced by a coil of wire in the circuit. The strength will be indicated by the deflection... (View More) of magnetic compass needles and by the distance a coil of wire was moved by the action of the circuit. This activity requires coils or spools of wire, a knife switch, three magnetic compasses, a source of electricity such as 3 D-cell batteries or an AC to DC power adapter, alligator-clipped wire, and a bar or cow magnet. This is the fourth lesson in the second session of the Exploring Magnetism teachers guide. (View Less)
This is an activity about electromagnetism. Learners will use a compass to map the magnetic field lines surrounding a coil of wire that is connected to a battery. This activity requires a large coil or spool of wire, a source of electricity such as... (View More) 3 D-cell batteries or an AC to DC power adapter, alligator-clipped wire, and magnetic compasses. This is the third lesson in the second session of the Exploring Magnetism teachers guide. (View Less)
This interactive, online module provides an introduction to the concept of a black hole. Students explore the components of a black hole by using a diagram of an accretion disk, an event horizon, and jets of hot gas. Students may complete this... (View More) activity independently or in small groups. Detailed teacher pages, identified as Teaching Tips on the title page of No Escape: The Truth about Black Holes, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. This module is a subsection of "Is a Black Hole Really A Hole?" It is within the online exploration No Escape: The Truth about Black Holes available on the Amazing Space website. (View Less)