You are here
Home ›Narrow Search
Now showing results 1-10 of 26
Students will test various materials to determine if any can shield their "magnetometer" (compass) from an external magnetic field using their own experimental design. If no suitable material is available, they will devise another method to protect... (View More) their instrument. Includes background science for the teacher, worksheets, adaptations and extensions. Next Generation Science Standards (NGSS) are also identified. (View Less)
This module focuses on ultraviolet radiation on Earth and in space and how it affects life. Learners will construct their own "martian" using craft materials and UV beads. They will explore how UV radiation from the Sun can affect living things,... (View More) comparing conditions on Earth and Mars, and then discuss ways in which organisms may protect themselves from UV radiation. They will then take part in a Mars Creature Challenge, where they will change their creature to help it survive harsh UV conditions — like on Mars. They will then test their Mars creatures by subjecting them to different environmental conditions to see how well they "survive" in a martian environment. This investigation will explore shelter and protection as one of life’s requirements and how Earth’s atmosphere protects life from harmful UV radiation. It also includes specific tips for effectively engaging girls in STEM. This is activity 5 in Explore: Life on Mars? that was developed specifically for use in libraries. (View Less)
Learners will build an open spectrograph to calculate the angle the light is transmitted through a holographic diffraction grating. After finding the desired angles, the students will design their own spectrograph using the information learned. The... (View More) activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
Learners will compare known elemental spectra with spectra of Titan and Saturn’s rings from a spectrometer aboard the NASA Cassini spacecraft. They identify the elements visible in the planetary and lunar spectra. The activity is part of Project... (View More) Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
Learners will use a spectrograph to gather data about light sources. Using the data they’ve collected, students are able to make comparisons between different light sources and make conjectures about the composition of a mystery light source. The... (View More) activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
Learners will look at various light sources (including glow sticks and Christmas lights) and make conjectures about their composition. The activity is part of Project Spectra, a science and engineering program for middle-high school students,... (View More) focusing on how light is used to explore the Solar System. (View Less)
Learners will build and decorate their own spectrographs using simple materials and holographic diffraction gratings. After building the spectrographs, they observe the spectra of different light sources. Requires advance preparation to spray-paint... (View More) the inside of the containers black the day before construction. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
In this hands-on activity, learners will build a solar cooker by lining a box with reflective material and adding a translucent cover. The cooker can be used to make food products. This activity recommends use of empty (clean) pizza boxes. This... (View More) activity requires a sunny outdoor location for an extended period of time. (View Less)
Students are introduced to the basic properties, behavior and detection of black holes through a brief discussion of common conceptions and misconceptions of these exciting objects. They "act out" a way black holes might be detected through their... (View More) interaction with other objects. In this activity, girls represent binary star systems in pairs, walking slowly around one another in a darkened room with each pair holding loops of wire to simulate the gravitational interaction. Most of the students are wearing glow-in-the-dark headbands to simulate stars, some are without headbands to represent black holes, and a small set of the black holes have flashlights to simulate X-ray emission. This activity is part of a series that has been designed specifically for use with Girl Scouts, but the activities can be used in other settings. Most of the materials are inexpensive or easily found. It is recommended that a leader with astronomy knowledge lead the activities, or at least be available to answer questions, whenever possible. (View Less)
Learners will relate the concept of density to the density of dust in space. They will use mission data from the Student Dust Counter (SDC) data viewer to determine the density of dust grains in a volume of space in order to answer questions... (View More) concerning the distribution of dust in the solar system. They will discover that space is much more sparsely populated with dust than they may have thought. Students discuss their findings with the class. Note: Updated links to the Student Dust Counter Data Viewer and website are provided under Related & Supplemental Resources (right). (View Less)