You are here
Home ›Now showing results 1-8 of 8
Become a crime scene investigator! Learners model Dawn Mission scientists, engineers, and technologists and how they use instrumentation to detect distant worlds. After a briefing to build context, students explore interactions between different... (View More) frequencies/wavelengths of the electromagnetic spectrum and matter as they investigate the different ways scientists gather and understand remote sensing data, using Dawn instruments as examples. This module is organized around a learning cycle, engaging students through several experiences to activate students' prior knowledge and assess conceptual understanding, informing next steps. (View Less)
This series of laboratory lessons and activities uses authentic solar imagery and data to introduce students to solar science. Students are asked to explore details in imagery, including how to deal with the issues of noise and resolution, and... (View More) understand scale. They are introduced to the concept of space weather and how that affects both observing instruments and the Earth. Students learn about spectra, how helium and coronium were discovered, and go on to explore real spectra from the Sun. Most activities are mathematically based, and targeted for grades 9-10. Imagery is included from NASA/ESA's SOHO mission, NASA's SDO mission, and Japan's Hinode satellite. (View Less)
Each lesson or activity in this toolkit is related to NASA's Lunar Reconnaissance Orbiter (LRO). The toolkit is designed so that each lesson can be done independently, or combined and taught in a sequence. The Teacher Implementation Guide provides... (View More) recommendations for combining the lessons into three main strands: 1) Lunar Exploration - These lessons provide a basic introduction to Moon exploration. Note that this strand is also appropriate for use in social studies classes. 2) Mapping the Moon - These lessons provide a more in-depth understanding of Moon exploration through the use of scientific data and student inquiry. The lessons also include many connections to Earth science and geology. 3) Tools of Investigation - These higher-level lessons examine the role of technology, engineering and physics in collecting and analyzing data. (View Less)
In this problem-based learning activity, students assume roles as members of the Department of Energy Efficiency and Renewable Energy (EERE). Your major area of concern is locating areas best for collecting solar power. You will need to evaluate... (View More) locations in the Northern Hemisphere and Southern Hemisphere, and decide which is the best location for solar energy development. Step-by-step instructions for use of the MY NASA DATA Live Access Server (LAS) guide students through selecting a data set, importing the data into a spreadsheet, creating graphs, and analyzing data plots. The lesson provides detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. Designed for student use, MY NASA DATA LAS samples micro datasets from large scientific data archives, and provides structured investigations engaging students in exploration of real data to answer real world questions. (View Less)
Designed for use in the high school classroom, this curriculum uses Earth system data, models, and resources from five NASA missions (Aqua, Aura, ICESat, Landsat, and Terra) to engage students in a systems approach to climate change. The curriculum... (View More) consists of 21 lessons divided into four modules: 1. Introduction to Eco-Schools USA and NASA data. 2. Factors That Influence Temperature, 3. How Climate Change Affects Natural and Human Systems, and 4. Renewable Energy and a Call to Action. Each lessons provides technology tips, supplements, student worksheets, answer keys and appendices. (View Less)
Assuming the role of a meteorologist, students will proclaim one month as "Thunderstorm season" for their chosen study area. This decision will be based on analysis of deep convective cloud data downloaded from the Live Access Server. This lesson... (View More) uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, and an online glossary. (View Less)
Hurricane Katrina serves as the focus for this lesson on the relationship between sea surface temperatures and hurricane intensity. Students assume the roles of Senior Science Advisors for the Louisiana Environmental Agency to research and plot the... (View More) data used to analyze Hurricane Katrina. Students then apply that analysis to possible future tropical storms impacting the U.S. Gulf Coast. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, an online glossary, and data analysis tools. (View Less)
El Niño Southern Oscillation (ENSO) affects weather, climate, and, consequently, humans and their activities. In this investigation, students review and analyze ENSO background info, data and satellite images in preparation for a game. Acting as... (View More) policy makers for Peru, students determine the details of an ENSO event based on information from climate specialists, and then allocate money to manage disaster preparedness and minimize impacts on agriculture and fishing. The URL opens to the investigation directory, with links to teacher and student materials, lesson extensions, resources, teaching tips, and assessment strategies. This is Investigation 1 of three found in the Grades 9-12 Module 3 of Mission Geography. The Mission Geography curriculum integrates data and images from NASA missions with the National Geography Standards. Each of the three investigations in Module 3, while related, can be done independently. (View Less)