You are here
Home ›Narrow Search
Now showing results 1-10 of 18
Using an online interactive platform, learners will explore our solar system from the perspective of the Sun. They will observe the motion of different worlds to determine their location in the solar system. Then they will launch probes to search... (View More) these small worlds (bodies in the solar system not classified as a planet or a moon) for the caches hidden on them in order to collect the astrocoins inside. A 5E instructional lesson allows students to analyze a model to locate small worlds, define speed/distance relationships, and identify model limitations. Images, worksheets and a rubric are included. Instructional objectives and learning outcomes are aligned with Next Generation Science Standards (NGSS); the NRC Framework for K-12 Science Education; Common Core State Standards for English Language Arts; and A Framework for 21st Century Learning. (View Less)
Students read and analyze two different articles about medical imaging using X-rays. This activity is from the NuSTAR Educators Guide: X-Rays on Earth and from Space, which focuses on the science and engineering design of NASA's NuSTAR mission. The... (View More) guide includes a standards matrix, assessment rubrics, instructor background materials, and student handouts. (View Less)
Students will use the law of reflection to reflect a laser beam off multiple mirrors to hit a sticker in a shoebox. Since X-ray telescopes must use grazing angles to collect X-rays, students will design layouts with the largest possible angles of... (View More) reflection. This activity is from the NuSTAR Educators Guide: X-Rays on Earth and from Space, which focuses on the science and engineering design of NASA's NuSTAR mission. The guide includes a standards matrix, assessment rubrics, instructor background materials, and student handouts. (View Less)
In this lesson, learners will first use computers to research and learn how solar panels convert sunlight into electricity. Next, they will calculate the surface area of solar panels board a satellite and their total power generated in various... (View More) positions of the satellite, given the dimension of the panels. After, learners will organize and write a report summarizing the information about the MMS mission satellites. This activity requires student access to internet accessible computers. This is lesson four of the MMS Mission Educator's Instructional Guide, which uses examples from the mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page). (View Less)
In this learning assessment, students demonstrate understanding of the following concepts: solids, liquids and gases, changes of state, convection, and density. Students create a skit where the actors and actresses are molecules, and dramatize,... (View More) through body motions, how the behavior of molecules results in the observable changes we see. A detailed scoring rubric is included with the resource. The investigation supports material presented in chapter 3 "What Heats the Earth's Interior?" in the textbook, Energy flow, part of Global System Science, an interdisciplinary course for high school students that emphasizes how scientists from a wide variety of fields work together to understand significant problems of global impact. (View Less)
Learners will study the essential components and variables of an ion propulsion system. Activities include an on-line ion propulsion engine simulation and design. Included are changes in energy and fuel consumption as a result of variable changes... (View More) (dependent/independent variable relationships). This is activity 5 of 5 in Structure and Properties of Matter: Ion Propulsion. (View Less)
This is a lesson about the magnetic field of a bar magnet. The lesson begins with an introductory discussion with learners about magnetism to draw out any misconceptions that may be in their minds. Then, learners freely experiment with bar magnets... (View More) and various materials, such as paper clips, rulers, copper or aluminum wire, and pencils, to discover that magnets attract metals containing iron, nickel, and/or cobalt but not most other materials. Next, learners experiment with using a magnetic compass to discover how it is affected by the magnet and then draw the magnetic field lines of the magnet by putting dots at the location of the compass arrow. This is the first lesson in the first session of the Exploring Magnetism teacher guide. (View Less)
This is an activity about magnetic induction. Learners will induce a flow of electricity in a wire using a moving bar magnet and measure this flow using a galvanometer, or Am meter. Through discussion, this activity can then be related to magnetic... (View More) fields in nature. This activity requires use of a galvanometer, bar or cow magnet, and wire. This is the fifth lesson in the second session of the Exploring Magnetism teacher guide. (View Less)
This is a lesson to demonstrate magnetic field lines in 2- and 3-dimensions. In the first activity, learners sprinkle iron filings over a magnet underneath a paper and record their observations. The second activity involves building a 3-D magnetic... (View More) field visualizer using a clear plastic bottle, a cow magnet and iron filings. This is the second lesson in the first session of the "Exploring Magnetism" teacher guide. (View Less)
This is an activity about electromagnetism. Learners will set up a simple circuit using a battery, wire, and knife switch, and then use a compass to map the magnetic field lines surrounding the wire. Next, they will add a coil of wire to the simple... (View More) circuit and map the magnetic fields again. This is the second lesson in the second session of the Exploring Magnetism teachers guide. (View Less)