You are here
Home ›Now showing results 1-10 of 12
This is an online lesson associated with activities during Solar Week, a twice-yearly event in March and October during which classrooms are able to interact with scientists studying the Sun. This activity is scheduled to occur during Monday of... (View More) Solar Week. The lesson introduces the concept of astronomical filters and their connections to imaging different objects in space. Learners will explore perceptions of images as seen using different colors of light, construct a filter wheel, and practice investigating various astronomical images using the filter wheel. This material was designed to highlight how filters are useful to astronomers and show how a real astronomical telescope uses filters to image the Sun. Outside of Solar Week, information, activities, and resources are archived and available online at any time. (View Less)
This is an activity about color. Participants will use scientific practices to investigate answers to questions involving the color of the sky, sunsets, the Sun, and oceans. This activity requires use of a clear acrylic or glass container to hold... (View More) water, a strong flashlight, batteries for the flashlight, and powdered creamer or milk. (View Less)
This is an activity about using models to solve a problem. Learners will use a previously constructed model of the MMS satellite to determine if the centrifugal force of the rotating MMS model is sufficient to push the satellite's antennae outward,... (View More) simulating the deployment of the satellites after launch. Then, learners will determine the minimum rotational speed needed for the satellite to successfully deploy the antennae. This is the seventh activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
This lesson includes a demonstration to show why the sky is blue and why sunsets and sunrises are orange. Learners will use scientific practices to investigate answers to questions involving the color of the sky, sunsets, the Sun, and oceans.... (View More) Requires a clear acrylic or glass container to hold water, a strong flashlight, and powdered creamer or milk. (View Less)
In this activity, learners will experiment with ultraviolet light sensitive plastic beads, which are generally white but turn colors when exposed to UV light. Participants are informed about the nature and risks of UV light and are asked to explore... (View More) what types of materials keep the beads, and hence the user, safe from UV light. (View Less)
This is an activity about depicting the relative strength of magnetic fields using field line density. Learners will use the magnetic field line drawing of six magnetic poles created in a previous activity and identify the areas of strong, weak, and... (View More) medium magnetic intensity using the density of magnetic field lines. This is the fifth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website. How to Draw Magnetic Fields - II in the Magnetic Math booklet must be completed prior to this activity. (View Less)
This is an activity about depicting magnetic fields. Learners will observe two provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines for both... (View More) orientations. This is the third activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website. (View Less)
This is an activity about depicting magnetic polarity. Learners will observe several provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines and depict... (View More) the polarities for several orientations, including an arrangement of six magnetic poles. This is the fourth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website. (View Less)
This is a lesson about the magnetic field of a bar magnet. The lesson begins with an introductory discussion with learners about magnetism to draw out any misconceptions that may be in their minds. Then, learners freely experiment with bar magnets... (View More) and various materials, such as paper clips, rulers, copper or aluminum wire, and pencils, to discover that magnets attract metals containing iron, nickel, and/or cobalt but not most other materials. Next, learners experiment with using a magnetic compass to discover how it is affected by the magnet and then draw the magnetic field lines of the magnet by putting dots at the location of the compass arrow. This is the first lesson in the first session of the Exploring Magnetism teacher guide. (View Less)
This is a lesson to demonstrate magnetic field lines in 2- and 3-dimensions. In the first activity, learners sprinkle iron filings over a magnet underneath a paper and record their observations. The second activity involves building a 3-D magnetic... (View More) field visualizer using a clear plastic bottle, a cow magnet and iron filings. This is the second lesson in the first session of the "Exploring Magnetism" teacher guide. (View Less)