You are here
Home ›Narrow Search
Now showing results 1-10 of 141
Students analyze and interpret the accompanying large-format images of Mars taken by NASA’s Mars Thermal Emission Imaging System (THEMIS) camera. The analysis involves identifying geologic features, calibrating the size of those features, and... (View More) determining surface history. The lesson culminates in students conducting in-depth research on questions generated during their analyses. The lesson is part of the Mars Education Program series; it models scientific inquiry using the 5E instructional model and includes teacher notes and vocabulary. Next Generation Science Standards are listed. (View Less)
Students use the research topic questions generated in the earlier lesson entitled, “Mars Image Analysis,” to refine testable questions and develop hypotheses. The lesson is part of the Mars Education Program series; it models scientific inquiry... (View More) using the 5E instructional model and includes teacher notes and vocabulary. Next Generation Science Standards are listed. (View Less)
This news story describes the search for Pluto which began in the early 1900s and the subsequent discovery of its moon system. The text describes how the Hubble Space Telescope was used to discover Pluto's other moons. Star Witness News is a series... (View More) of articles, written for students, that are inspired by Hubble Space Telescope press releases. Supplemental education materials include background information, vocabulary, and discussion questions and answers. Common Core Standards for English Language Arts are also identified. (View Less)
In this lesson, students participate in a skit presenting a mock-up of a planetary surface rover they designed. Students will be able to: demonstrate their knowledge of Mars and rovers by presenting their team skit; present their rover, its... (View More) requirements and features to the class; answer questions asked by the class based on research conducted during the unit; incorporate feedback from others and ideas from other presentations into student work. The lesson plan has a number of appendices, including: standards alignment, essential question, and exit ticket. This is Lesson 15 of the elementary school version of the 6-week Mars Rover Celebration curriculum. (View Less)
In this lesson, students will design a planetary surface rover to conduct a planetary surface investigation. It uses the 5E learning cycle and is designed around an essential question: How will creating a prototype of your rover help you prepare for... (View More) the Mars Rover Celebration? The lesson objectives are to: learn about scientific careers to gain a better understanding of a sampling of careers that have contributed to designing and developing Curiosity; draw a detailed, final-design sketch/diagram of the rover that will be built; identify missions, requirements and features of the rover using labels and captions when necessary. A number of appendices are provided, including standards alignment. This is Lesson 12 of the elementary school version of the 6-week Mars Rover Celebration curriculum. (View Less)
Students participate in a series of activities to discover how astronomers use computers to create images and understand data. No programming experience is required; students will use pencilcode.net to complete such activities as creating a color,... (View More) exploring filters and color-shifting, and creating individual images of star-forming regions. These activities demonstrate a real world application of science, technology and art. (View Less)
The effects of gravity on near-surface objects and those in Earth orbit are explored in this activity. A brief explanation, links to three related videos, a teacher's guide and short assessment are included.
This lesson plan teaches how to select the landing site for a planetary surface investigation, using the 5E learning cycle. Students will be able to determine a landing site for their Mars rover; work with their team to summarize information and... (View More) identify important details in non-fiction writing; research Gale Crater through an online interactive module; use Google Earth Mars to learn about Mars surface features; gather and analyze data to conduct a scientific experiment; collect and record data in a science notebook to draw logical and scientific conclusions; define and identify the role of controls and variables in teams' scientific or technical questions; and differentiate between weather and climate. The lesson plan has a number of appendices, including standards alignment. This is Lesson 8 of the elementary school version of the 6 week Mars Rover Celebration curriculum. (View Less)
This lesson plan uses the 5E learning cycle and is designed around an essential question: How do I know when I’ve found important information in my reading? Learning objectives include: identify important details in informational texts; learn and... (View More) or review summarizing skills, work collaboratively to locate important information about Mars such as terrain, climate, and atmosphere; understand the rationale and importance of note-taking; develop effective note-taking strategies; and apply note-taking skills to record key information in students' science notebooks. The lesson plan has a number of appendices, including standards alignment. This is Lesson 4 of the elementary school version of the 6-week Mars Rover Celebration curriculum. (View Less)
This lesson plan uses the 5E learning cycle and is designed around an essential question: Why is the method you chose for landing your Rover on Mars the best one for your mission? The lesson objectives include: examine different methods for landing... (View More) rovers on Mars; determine which landing strategy is best suited to land the team's rover; research solutions to different problems that may occur once the rover lands on Mars; learn how to write in a persuasive manner; and present a well-written persuasive argument to teammates. The lesson plan has a number of appendices, including standards alignment. This is Lesson 10 of the elementary school version of the 6-week Mars Rover Celebration curriculum. (View Less)