You are here
Home ›Now showing results 1-10 of 33
The biosphere- that part of Earth's land, water and atmosphere that supports life- is the focus of this GLOBE eTraining program module. Protocols for classifying land cover, performing biometric field studies and measuring green-up and green-down... (View More) are explained. In addition, each protocol module includes interactive digital field and lab experiences along with online assessments. Instructions for uploading observations to the GLOBE database as well as for using the GLOBE visualization system are provided. GLOBE eTraining provides the opportunity for new and experienced GLOBE users to complete science protocol training online. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)
Working in groups, students use contact paper to make samplers to collect local data on aerosols - the small particles found in the atmosphere. Students then analyze, interpret and make predictions based on their data. Both the instructions for... (View More) making the aerosol sampler and the data sheets are included. This lesson is one of four in the Elementary GLOBE storybook entitled, "What's Up in the Atmosphere? Exploring Colors in the Sky." GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)
This set of three videos illustrates how math is used in satellite data analysis. NASA climate scientist Claire Parkinson explains how the Arctic and Antarctic sea ice covers are measured from satellite data and how math is used to determine trends... (View More) in the data. In the first video, she leads viewers from satellite data collection through obtaining a time series of monthly Arctic and Antarctic average sea ice extents for November 1978-December 2016. In the second video, she begins with the time series from the first video, removes the seasonal cycle by calculating yearly averages, and proceeds to calculate the slopes of the lines to get trends in the data, revealing decreasing sea ice coverage in the Arctic and increasing sea ice coverage in the Antarctic. In the third video, she uses a more advanced technique to remove the seasonal cycle and shows that the trends are close to the same, whichever method is used. She emphasizes the power of math and that the techniques shown for satellite sea ice data can also be applied to a wide range of data sets. Note: See Related & Supplemental Resources for the maps and data files (1978-2016) that will allow you to do the calculations shown in the video. These also include data for different regions of the Arctic and Antarctic, enabling learners to do additional calculations beyond those shown in the videos. (View Less)
This site lists the necessary supplies, along with the step-by-step directions, to turn a t-shirt into a carry-all bag. Also included are links to two iron-on transfers - the Climate Kids banner and the Leaps and Flutters game - for use in... (View More) decorating the bag. The Climate Kids website is a NASA education resource featuring articles, videos, images and games focused on the science of climate change. (View Less)
Instructions are provided for making a solar oven, followed by directions for using the oven to make s'mores. A side column discusses the practicality of using solar ovens in places like western Africa. The Climate Kids website is a NASA education... (View More) resource featuring articles, videos, images and games focused on the science of climate change. (View Less)
In this lesson, students will think about their experiences with hurricanes and severe storms, and then learn the basics of what causes hurricanes to form. Students will learn how hurricane prediction has progressed, and how satellite technology is... (View More) used to see inside storms to get improved data for enhancing computer-based mathematical models. To share what they’ve learned, students will create a news report (script or comic strip) to tell others about hurricanes and hurricane prediction. This lesson uses the 5E instructional model. TRMM is Tropical Rainfall Measuring Mission. (View Less)
This activity is a short engineering design challenge to be completed by individual students or small teams. A real-world problem is presented, designing buildings for hurricane-prone areas, but in a simulated way that works in a classroom, after... (View More) school club, or informal education setting. Students are given simple materials and design requirements, and must plan and build a tower as tall as possible that will hold up a tennis ball while resisting the force of wind from a fan. After the towers are built, the group comes together to test them. If there is time after testing, which can be observational or framed as a contest between teams, students can redesign their towers to improve their performance, or simply discuss what worked well and what didn’t in their designs. (View Less)
Materials Cost: $1 - $5 per group of students
This textbook chapter describes the processes through which El Niño and La Niña conditions emerge. The resource includes an animation of ocean currents, and links to current news articles, and a suite of pre- and post-unit assessments. A teacher's... (View More) guide supports classroom use. This is the eighth chapter in the unit, Energy Flow, exploring the transfer of energy between the atmosphere, oceans, land, and living things over short and long timescales. The resource is part of Global System Science (GSS), an interdisciplinary course for high school students that emphasizes how scientists from a wide variety of fields work together to understand significant problems of global impact. (View Less)
Students will use NASA's Global Climate Change website to research five of the key indicators (vital signs) of Earth’s climate health. These indicators are: global surface temperature, carbon dioxide concentrations, sea level, Arctic sea ice, and... (View More) land ice. They will use this information, shared in their expert groups, to create an informative poster about their assigned key indicator. The poster will be used by other groups to learn about all five of the key indicators and how Earth scientists use these indicators to analyze changes in Earth’s climate. The lesson plan uses the 5E instructional sequence. (View Less)
This chapter describes how to set a scale and measure distances and areas on satellite images. Using ImageJ, a freely available image analysis program that runs on most operating systems, users set the spatial calibration of an image, then select... (View More) and measure distances and areas on it. The measurement results are reported in real-world units. The technique is most useful and accurate for nadir view (straight down) images. In this chapter, users examine satellite images of the Aral Sea, which has shrunk dramatically since 1960 because the rivers that flow into it have been tapped for irrigation. Users access satellite images of the region, then set a scale and measure the width of the sea each year. On another set of images, they highlight areas that represent water and measure them to see how these areas of the sea changed. This chapter is part of the Earth Exploration Toolbook, which provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)