You are here
Home ›Narrow Search
Now showing results 1-10 of 14
Each lesson or activity in this toolkit is related to NASA's Lunar Reconnaissance Orbiter (LRO). The toolkit is designed so that each lesson can be done independently, or combined and taught in a sequence. The Teacher Implementation Guide provides... (View More) recommendations for combining the lessons into three main strands: 1) Lunar Exploration - These lessons provide a basic introduction to Moon exploration. Note that this strand is also appropriate for use in social studies classes. 2) Mapping the Moon - These lessons provide a more in-depth understanding of Moon exploration through the use of scientific data and student inquiry. The lessons also include many connections to Earth science and geology. 3) Tools of Investigation - These higher-level lessons examine the role of technology, engineering and physics in collecting and analyzing data. (View Less)
This is an activity about using models to solve a problem. Learners will use a previously constructed model of the MMS satellite to determine if the centrifugal force of the rotating MMS model is sufficient to push the satellite's antennae outward,... (View More) simulating the deployment of the satellites after launch. Then, learners will determine the minimum rotational speed needed for the satellite to successfully deploy the antennae. This is the seventh activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
Learners will review what they have learned about scientific and engineering investigation, construct a valid scientific question that can be answered by data and/or modeling, and choose an appropriate mission for their rover that will answer their... (View More) scientific question. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, four Vocabulary Cards, and supplements on Writing a Scientific Question and Mission Choices. This is lesson 5 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
Learners will take and then compare the images taken by a camera - to learn about focal length (and its effects on field of view), resolution, and ultimately how cameras take close-up pictures of far away objects. Finally, they will apply this... (View More) knowledge to the images of comet Tempel 1 taken by two different spacecraft with three different cameras, in this case Deep Impact and those expected/obtained from Stardust-NExT. This lesson could easily be adapted for use with images from other NASA missions. (View Less)
This is an online sorting game that compares the lifetime risk of death from an asteroid impact to other threats. For example, are you more likely to be killed by an amusement park ride or an asteroid impact? It is part of the Killer Asteroids Web... (View More) Site. The site also features a background overview of the differences between asteroids and comets, information on different types of asteroids (rubble piles vs monoliths), a discussion of how at risk Earth really is to an asteroid or comet impact, and background information on light curves. (View Less)
This is a multi-level, physics-based game that asks players to save Earth by using their spaceship to deflect an incoming asteroid. It is designed to accurately reflect the physics of space and could be used to help confront preconceptions about... (View More) motion and forces in space. It is part of the Killer Asteroids Web Site. The site also features a background overview of the differences between asteroids and comets, information on different types of asteroids (rubble piles vs monoliths), a discussion of how at risk Earth really is to an asteroid or comet impact, and background information on light curves. (View Less)
This is a game about light curves that will test your ability to figure out things about an asteroid from just a graph of its brightness. Astronomers use telescopes to collect light curves - measurements of the brightness of distant asteroids over... (View More) time. It is part of the Killer Asteroids Web Site. The site also features a background overview of the differences between asteroids and comets, information on different types of asteroids (rubble piles vs monoliths), a discussion of how at risk Earth really is to an asteroid or comet impact, and background information on light curves. (View Less)
This is a game which focuses on the challenge of moving a "rubble pile" asteroid. Players have the option of using bombs, impactors, or "pusher" ships. It is a simpler version of Rubble! and part of the Killer Asteroids Web Site. The site also... (View More) features a background overview of the differences between asteroids and comets, information on different types of asteroids (rubble piles vs monoliths), and a discussion of how at risk Earth really is to an asteroid or comet impact. (View Less)
This is a website about asteroids and comets. Learners can play a physics-based asteroid game, learn about how backyard astronomers are contributing to asteroid research, or simulate an asteroid impact using a Google Earth Impact simulation.... (View More) Includes background information about comets and asteroids and links to multimedia resources. (View Less)
This online game allows players to choose any location on Earth and impact it with a variety of different sized asteroids and comets. They can see how big the blast radius will be, and determine what size object it would take to wipe out their town.... (View More) It is part of the Killer Asteroids Web Site. The site also features a background overview of the differences between asteroids and comets, information on different types of asteroids (rubble piles vs monoliths), a discussion of how at risk Earth really is to an asteroid or comet impact, and background information on light curves. (View Less)