You are here
Home ›Now showing results 31-40 of 83
This is a self-paced, on-line tutorial where learners can identify and analyze jet streams using water vapor imagery from weather satellites. Learners are introduced to the concept and function of the water vapor channel and how these images compare... (View More) with weather models. An optional embedded refresher tutorial with providing meteorological background information about jet streams supports student-centered investigations in three learning scenarios: a jet stream tracking challenge made by a TV meteorologist, analyzing data in a in-air turbulence scenario involving an airline pilot, and a decision-making challenge involving the launching and tracking of a weather balloon. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the third of three modules in the tutorial, Water Vapor Imagery. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial enables learners to identify and measure iceberg size from remotely-sensed satellite images. Two techniques are explored: the geometric shape method, which provides a rapid rough estimate of area; and the pixel... (View More) count method, which employs special software to measure the size more accurately. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the second of three modules in the tutorial, Hunting Icebergs. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial provides learners with an opportunity to learn about remote sensors, and the role remote-sensing instruments play in our understanding of the Earth system. Activities within the tutorial allow learners to... (View More) demonstrate for themselves how atmospheric absorption and the signal-to-noise ratio determine the spectral resolution of a remotely-sensed image. A culminating simulation activity shows learners how engineers must consider design tradeoffs between quality and quantity of data produced. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the second of three modules in the tutorial, Principles in Remote Sensing. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial guides learners through the decision-making process in locating data that will enable the identification of tabular icebergs, including: selecting the appropriate satellite orbit, and identifying the optimal... (View More) solar and infrared wavelength values to discriminate between water and ice in remotely-sensed images. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the first of three modules in the tutorial, Hunting Icebergs. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial examines upwelling in non-coastal regions of the ocean as well as the factors that influence algal blooms. Learners become familiar with ocean dynamics that create a surface deficit of water and cause upwelling,... (View More) and engage in activities that allow them to detect and measure the areal extent of blooms using remotely-sensed imagery. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the third of three modules in the tutorial, Coastal Upwelling. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial enables learners to discover practical uses for water vapor imagery from weather satellites. The module introduces the concept and function of the water vapor channel of satellite imagery, and teaches how to... (View More) interpret and apply data obtained from the water vapor channel. At the end of the tutorial, links are provided to real world data collected by NASA satellites where learners can apply the skills they have acquired. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the first of three modules in the tutorial, Water Vapor Imagery. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial introduces classic weather patterns and unique meteorological events associated with the seasons in the Great Lakes region, while simultaneously demonstrating the utility of remote-sensing data to monitor... (View More) changes in weather and climate. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the third of three modules in the tutorial, Great Lakes Weather and Climate. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial explores the use of remote-sensing data to monitor Great Lakes weather and climate. Interactive tools are provided to allow the learner to compare the surface area of the different Great Lakes. Seasonal climate... (View More) extremes observed in the Great Lakes region is explained by the geographical characteristics of its mid-latitudinal location, and are documented in a series of seasonal images produced by satellite sensors. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the first of three modules in the tutorial, Great Lakes Weather and Climate. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial explores how biological activity helps to determine vertical nutrient distributions in the ocean, examines why upwelling boosts marine productivity, and considers how various physical forces interact to... (View More) determine upwelling. Learners then predict coastal upwelling events based on prevailing physical conditions as identified in remotely-sensed imagery. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the first of three modules in the tutorial, Coastal Upwelling. (Note: requires Java plug-in) (View Less)
In this activity, students investigate one of the variables that affects Earth's albedo. The lesson includes detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. This lesson is from the MY NASA... (View More) DATA project, which has created microsets from large scientific data sets, and wrapped them with tools, lesson plans, and supporting documentation so that a teacher, or anyone in the interested public, can use authentic NASA Earth system science data. (View Less)