You are here
Home ›Now showing results 1-10 of 61
This multi-phased learning package progresses from guided engineering to an open mission-design challenge. Each step is scaffolded and includes easy-to-implement teaching tools, lessons and art activities. Learners, working in collaborative teams,... (View More) build an O-Rex spacecraft model. The building process incorporates inventing, designing and engineering- leading to a deeper understanding of NASA mission work. A leader guide, instructions, templates and a YouTube video are included and accessed through the Related & Supplemental Resources. (View Less)
Explore the size relationship between the sun and Earth by using tape and stickers. Learners estimate, then place and count the number of one-inch diameter stickers (representing Earths) that would fit across the diameter of a nine-foot circle of... (View More) tape (representing the sun). The relative size of each becomes visually apparent. Related Next Generation Science Standards (NGSS) are listed. (View Less)
Materials Cost: 1 cent - $1 per group of students
Using stickers created from the templates provided, students create a Venn diagram of objects in our solar system, our galaxy and the universe. This short activity can be used as a formative assessment.
Materials Cost: 1 cent - $1 per group of students
Become a crime scene investigator! Learners model Dawn Mission scientists, engineers, and technologists and how they use instrumentation to detect distant worlds. After a briefing to build context, students explore interactions between different... (View More) frequencies/wavelengths of the electromagnetic spectrum and matter as they investigate the different ways scientists gather and understand remote sensing data, using Dawn instruments as examples. This module is organized around a learning cycle, engaging students through several experiences to activate students' prior knowledge and assess conceptual understanding, informing next steps. (View Less)
This paper model shows the orbit of Comet ISON (late 2013) with respect to the innermost planets of the solar system. After reading background information about comets - how they form and where they come from - students cut out and tape together the... (View More) pieces of the model provided to show its orbital pathway (a single page of parts that can be assembled using just scissors and adhesive). Links are provided to related classroom activities and additional resources. (View Less)
Learners read or listen to a cultural story describing a shape identified in the Moon's surface features. Then, they consider how the features formed over the Moon's 4.5-billion-year history and investigate Earth rocks that are similar. Children may... (View More) examine the types of Earth rocks (named anorthosite, basalt, and breccia) that are also found on the Moon and that would have been shaped by the processes explored here. Finally, they draw their own object or character that they see when they look at the Moon. This activity is part of Explore! Marvel Moon, a series of activities developed specifically for use in libraries. (View Less)
Learners use a Styrofoam ball, sunlight, and the motions of their bodies to model the Moon's phases outdoors. An extension is to have children predict future Moon phases. This activity is part of Explore! Marvel Moon, a series of activities... (View More) developed specifically for use in libraries. (View Less)
This is an activity about the way the moon interacts with sunlight. Learners consider a ball, wrapped in aluminum foil, and experiment with a flashlight to make it appear bright. The children compare the foil-wrapped ball to a Moon globe and... (View More) discover that the Moon reflects very little of the light the falls on it, but still appears bright. The children construct their own globe of the Moon to take home with them by gluing a map template onto a tennis-ball. This activity is most effective when conducted in a dark area, such as outdoors at night or in a darkened room. This activity is part of Explore! Marvel Moon, a series of activities developed specifically for use in libraries. (View Less)
Students will use observation to make their own geologic map of the Moon’s Copernicus Crater. The students will identify crater features in a photogeologic image and use those observations to color their map with the appropriate geologic units.
This kick-off activity sets the stage for further explorations and activities in Explore! To the Moon and Beyond! - a resource developed specifically for use in libraries. As a group, learners will discuss what they know about Earth's Moon. They... (View More) will read books to learn more about the lunar environment and history of exploration, and use their knowledge to create a drawing or model of the lunar landscape. (View Less)