You are here
Home ›Now showing results 1-10 of 29
Students will test various materials to determine if any can shield their "magnetometer" (compass) from an external magnetic field using their own experimental design. If no suitable material is available, they will devise another method to protect... (View More) their instrument. Includes background science for the teacher, worksheets, adaptations and extensions. Next Generation Science Standards (NGSS) are also identified. (View Less)
NuSTAR has a 10-meter rigid mast that separates the optics from the detector. Inspired by this, students will design, test, and build a lightweight mast 1 meter tall that can fully support the weight of a typical hardcover textbook (~2 kg). The... (View More) footprint of the mast must be no larger than 11" x 14". This activity is from the NuSTAR Educators Guide: X-Rays on Earth and from Space, which focuses on the science and engineering design of NASA's NuSTAR mission. The guide includes a standards matrix, assessment rubrics, instructor background materials, and student handouts. (View Less)
This is the first module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Activities are self-directed by students or student teams using online videos and data from the SDO satellite to explore, research and build knowledge about... (View More) features of the Sun. Students build vocabulary, apply or demonstrate learning through real world connections, and creating resources to use in their investigations. Each activity comes with both a teacher and student guide with sequential instructions and embedded links to the needed videos and internet resources. Activity 1A: Structure of the Earth's Star takes students through the features and function of the Sun's structures using online videos, completing a "Sun Primer" data sheet using information from the videos, and creating a 3D origami model of the Sun. Students use a KWL chart to track what they have learned. Activity 1B: Observing the Sun has students capture real solar images from SDO data to find and record sunspots and track their movement across the surface of the Sun. Activity 1C has students create a pin-hole camera to use in calculating the actual diameter of the Sun, and then calculate scales to create a Earth-Sun scale model. Students reflect on their learning and results at the end of the module. An internet connection and access to computers are needed to complete this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
Students will use the law of reflection to reflect a laser beam off multiple mirrors to hit a sticker in a shoebox. Since X-ray telescopes must use grazing angles to collect X-rays, students will design layouts with the largest possible angles of... (View More) reflection. This activity is from the NuSTAR Educators Guide: X-Rays on Earth and from Space, which focuses on the science and engineering design of NASA's NuSTAR mission. The guide includes a standards matrix, assessment rubrics, instructor background materials, and student handouts. (View Less)
Students use a dipole magnet and compass to model and map Earth's magnetic field. They then induce a magnetic field to represent a Ring Current in order to observe the response to a fluctuating electric current caused by a solar storm. The lesson... (View More) includes background information, procedures, worksheets, answer keys and graphics. Next Generation Science Standards (NGSS) are listed. (View Less)
In this activity, students create a scale model depicting the vertical distance from Earth’s surface to various features and objects, including Earth’s atmospheric layers, the Van Allen Radiation Belts, and geocentric satellites. Students also... (View More) compare the vertical distances to these features and objects with distances from their classroom to other common points on the ground. Includes background science information; student reading, handouts and worksheet; teacher information; and suggested extensions and adaptations for students with vision impairment. (View Less)
In this activity, participants learn about the atmosphere by making observations and taking measurements. They will go outside and use scientific equipment to collect atmospheric moisture data (temperature, relative humidity, precipitation and cloud... (View More) cover). Students will use this qualitative and quantitative data to understand how water is found in the atmosphere, how the atmosphere determines weather and climate, and how Earth’s spheres are connected through the water cycle. The data collection is based on protocols from the GLOBE program. This activity uses the 5E instructional model and is part of the "Survivor Earth" series of one-hour lessons. (View Less)
Materials Cost: $1 - $5 per group of students
In this lesson students investigate the effects of black carbon on arctic warming and are introduced to a mechanism of arctic warming that is not directly dependent on greenhouse gases in the atmosphere: black carbon deposition on Arctic snow and... (View More) ice. It can also be used to introduce the concept of albedo. Prerequisite knowledge: students understand the concepts of absorption and reflection of light energy. This lesson is designed to be used with either an Earth/environmental science or chemistry curriculum. It may also be used as an enrichment activity in physics or physical science during a unit on energy. Includes suggested modifications for students with special needs and low technology option. Requires advance preparation, including freezing ice samples overnight. (View Less)
In this activity, participants learn about the geosphere by making observations and taking measurements. They will go outside and use scientific equipment to investigate water in the soil by measuring soil moisture, temperature, color and... (View More) consistency. Students will use this qualitative and quantitative data to understand how water is found in many places in the natural environment and how these places are connected in the water cycle. The data collection is based on protocols from the GLOBE program. This activity uses the 5E instructional model and is part of the "Survivor Earth" series of one-hour lessons. (View Less)
Materials Cost: $1 - $5 per group of students
In this lesson, students will learn about the water cycle and how energy from the sun and the force of gravity drive this cycle. The emphasis in this lesson will be on having students understand the processes that take place in moving water through... (View More) Earth’s system. (View Less)