You are here
Home ›Now showing results 1-10 of 37
This is an activity about the requirements of life. Learners will explore what living things need to survive and thrive by creating and caring for a garden plot (outdoors where appropriate) or a container garden (indoors) at the program facility.... (View More) The garden will be used to beautify the facility with plant life with many planting and landscaping options provided. Children will consider the requirements of living things, compare the surface conditions on Mars to those found on Earth, view images/video of a NASA Astrobiology Institute "garden" where astrobiologists are studying life under extreme conditions, and consider the similarities and differences in the type of life that would be possible on Mars as compared to their garden on Earth. It also includes specific tips for effectively engaging girls in STEM. This is activity 3 in Explore: Life on Mars? that was developed specifically for use in libraries. (View Less)
These directions allow students to open different images that have been collected from the ROSAT satellite. The directions instruct the user to open the website, but first the user will need to install Hera software. (See related and supplementary... (View More) resources for a link to download Hera software at http://imagine.gsfc.nasa.gov/teachers/hera/install/install_hera.html). (View Less)
Learners will investigate, discuss, and determine why humans have always explored the world (and now space) around them. Students determine these reasons for exploration through a class discussion. In the first activity, students use the Internet to... (View More) examine the characteristics of past explorers and why they conducted their exploration. They then examine why current explorers - including the students themselves - want to explore other worlds in the Solar System. By the end of the lesson, the students can conclude that no matter what or when we explore - past, present, or future - the reasons for exploration are the same; the motivation for exploration is universal. Note: The MESSENGER mission to Mercury that is mentioned in this lesson ended operations April 30, 2015. For the latest information about MESSENGER and NASA's solar system missions see the links under Related & Supplemental Resources (right side of this page). (View Less)
In this self-paced, interactive tutorial, learners become familiar with basic concepts related to remote sensing of the Earth by satellites. Geosynchronous Earth Orbit (GEO) and Low Earth Orbit (LEO) satellites, as well as different types of onboard... (View More) sensors, are examined for their applicability to various real-world data collection and research applications. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the first of three modules in the tutorial, Principles in Remote Sensing. (Note: requires Java plug-in). (View Less)
This self-paced, interactive tutorial explores the use of remote sensing to monitor the weather and climate of the Great Lakes. Learners apply NASA satellite data as they examine the on-the-ground impact of seasonal changes in weather, including the... (View More) movement of storm tracks, lake-effect and lake-enhanced weather events, and become more familiar with the weather and climate of the Great Lakes region. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the second of three modules in the tutorial, Great Lakes Weather and Climate. (Note: requires Java plug-in). (View Less)
This self-paced, interactive tutorial incorporates data sets from a variety of sources to investigate coastal oceanographic processes and their connections to climate and biology. Learners will predict coastal upwelling events based on prevailing... (View More) physical conditions, and become familiar with how upwelling and bloom events in the ocean can be detected using satellite imagery, and make connections between local ocean conditions and global consequences. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the second of three modules in the tutorial, Coastal Upwelling. (Note: requires Java plug-in) (View Less)
This is a self-paced, on-line tutorial where learners can identify and analyze jet streams using water vapor imagery from weather satellites. Learners are introduced to the concept and function of the water vapor channel and how these images compare... (View More) with weather models. An optional embedded refresher tutorial with providing meteorological background information about jet streams supports student-centered investigations in three learning scenarios: a jet stream tracking challenge made by a TV meteorologist, analyzing data in a in-air turbulence scenario involving an airline pilot, and a decision-making challenge involving the launching and tracking of a weather balloon. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the third of three modules in the tutorial, Water Vapor Imagery. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial enables learners to identify and measure iceberg size from remotely-sensed satellite images. Two techniques are explored: the geometric shape method, which provides a rapid rough estimate of area; and the pixel... (View More) count method, which employs special software to measure the size more accurately. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the second of three modules in the tutorial, Hunting Icebergs. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial provides learners with an opportunity to learn about remote sensors, and the role remote-sensing instruments play in our understanding of the Earth system. Activities within the tutorial allow learners to... (View More) demonstrate for themselves how atmospheric absorption and the signal-to-noise ratio determine the spectral resolution of a remotely-sensed image. A culminating simulation activity shows learners how engineers must consider design tradeoffs between quality and quantity of data produced. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the second of three modules in the tutorial, Principles in Remote Sensing. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial guides learners through the decision-making process in locating data that will enable the identification of tabular icebergs, including: selecting the appropriate satellite orbit, and identifying the optimal... (View More) solar and infrared wavelength values to discriminate between water and ice in remotely-sensed images. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the first of three modules in the tutorial, Hunting Icebergs. (Note: requires Java plug-in) (View Less)