## You are here

Home ›Now showing results **11-20** of **37**

In this activity, students research scientific discoveries that happened by accident in the past, and learn how gamma-rays were discovered by 20th century scientists. In the process, students develop an understanding that science theories change in... (View More) the face of new evidence. This acitivity is part of the "Swift: Eyes Through Time" collection that is available on the Teacher's Domain website. (View Less)

This lesson will help students understand the cultural nature of scientific research. Students explore famous scientists, their theories, places of origin, and their culture. They document scientific viewpoints of famous scientists throughout... (View More) history and discuss geographical region, culture, gender, and other factors effecting scientific theories and discoveries. This activity helps students understand the cultural nature of scientific research and how people interpret science in different ways based on their social environments. This activity is one of several in the Swift: Eyes through Time collection available on the Teachers' Domain website. (View Less)

In this activity, students look at the distribution of aluminum foil balls arranged in a circle on the floor, and compare them to the distribution of gamma-ray bursts on the sky. This activity uses Gamma-ray Bursts as an engagement tool to teach... (View More) selected topics in physical science and mathematics. In addition to the activities, it features background information, assessment information, student worksheets, extension and transfer activities, and detailed information about the physical science and mathematics content standards for grades 9-12. This is Activity 3 of 4 in the guide which accompanies the educational wall sheet titled Angling for Gamma-ray Bursts (View Less)

In these activities, students investigate how gamma ray bursts emit energy in beams (as opposed to emitting light in all directions) and investigate the implications of this on the total number of gamma ray bursts seen in the universe. This activity... (View More) uses Gamma-ray Bursts as an engagement tool to teach selected topics in physical science and mathematics. In addition, the guide features background information, assessment information, student worksheets, extension and transfer activities, and detailed information about the physical science and mathematics content standards for grades 9-12. This is Activity 4 of 4 in the guide which accompanies the educational wall sheet, titled Angling for Gamma-ray Bursts. (View Less)

In this activity, students determine the direction to a gamma ray burst using the times it is detected by three different spacecraft located somewhere in the solar system. We assume that all the spacecraft are in the plane of the Earth's orbit... (View More) around the Sun; that is, there is no third dimension and that we are only concerned with two dimensions, x and y. We also assume the burst is billions of light years away, so the incoming gamma rays are traveling along parallel lines. This activity uses Gamma-ray Bursts as an engagement tool to teach selected topics in physical science and mathematics. In addition to the activities, the guide features background information, assessment information, student worksheets, extension and transfer activities, and detailed information about the physical science and mathematics content standards for grades 9-12. This is Activity 2 of 4 in the guide which accompanies the educational wall sheet titled Angling For Gamma-ray Bursts. (View Less)

In this hands-on activity, students analyze the data on Mystery Object Cards, observe that astronomical objects have many observable properties, and discover that these properties allow scientists to categorize astronomical objects into different... (View More) groupings. Students also discover that, because objects can be grouped in different ways, discrete categorization is not always possible. This is why scientists need time to fully study and understand celestial objects and phenomenon. This is activity one in the "Gamma Ray Burst" educational unit. It accompanies a wallsheet that uses gamma-ray bursts as an engagement tool to teach topics in physical science and mathematics. In addition to the activities, the wallsheet features background information, assessment information, student worksheets, and extension and transfer activities. (View Less)

In this activity, students solve exponential equations where the unknown is contained in the exponent. Students learn that taking base-10 or base-2 logs pulls down the exponent, allowing the unknown to be isolated and solved. This activity is... (View More) activity C3 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students convert antilogs to logs, and logs to antilogs using scientific notation as an intermediate step. They will thereby develop a look-up table for solving math problems by using logarithms. This is activity D2 in the "Far Out... (View More) Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity, students construct base-two slide rules that add and subtract base-2 exponents (log distances), in order to multiply and divide corresponding powers of two. Students use these slide rules to generate both log and antilog equations,... (View More) learning to translate one in terms of the other. This is activity C1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students use log tapes and base-two slide rules as references to graph exponential functions and log functions in base-10 and base-2. Students discover that exponential and log functions are inverse, reflecting across the y = x axis... (View More) as mirror images. This is activity E2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, the GLAST mission was renamed Fermi, for the physicist Enrico Fermi. (View Less)