## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **31-40** of **88**

This is a lesson plan for an activity that explores time zone math. Learners will translate their local time to times in other zones around the world and work with the concept of Universal Time, specifically in reference to the reporting,... (View More) description and analysis of solar flares and coronal mass ejections. This is activity 10 from Exploring Magnetism Guide 3: Magnetic Mysteries of the Aurora educator guide. (View Less)

In this activity, students estimate the size of the visible universe in relation to the size of the Milky Way Galaxy. To do so, students will get a sense of scale and will convert from centimeters to kilometers. This is the first activity in the... (View More) "Hidden Lives of Galaxies" information and activity booklet. It is designed for use with "The Hidden Lives of Galaxies" poster. (View Less)

This interactive, online module allows students to discover the velocity needed to escape the Earth's gravitational pull. By completing this activity, students discover how mathematics can be used to find escape velocity. Students may complete this... (View More) activity independently or in small groups. Detailed teacher pages, identified as Teaching Tips on the title page, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. This module is a subsection of "Is a Black Hole Really A Hole?". It is within the online exploration No Escape: The Truth about Black Holes available on the Amazing Space website. (View Less)

In this activity, students solve exponential equations where the unknown is contained in the exponent. Students learn that taking base-10 or base-2 logs pulls down the exponent, allowing the unknown to be isolated and solved. This activity is... (View More) activity C3 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students use their Log Tapes as a reference for ordered pairs, and graph positive numbers as a function of their base-10 logarithms. They extend each plotted point to the vertical axis, thereby generating a logarithmic scale that... (View More) cuts and folds into an improvised slide rule. This is activity E1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

This article is about the isoperimetric theorem. It states the theorem, explains its history and uses examples and exercises to demonstrate it. The resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created... (View More) by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

In this paper and pencil activity, students are provided with a map of the U.S. and use it to measure and calculate distance. Access to a globe will enhance the activity. The resource is part of the teacher's guide accompanying the video, NASA Why... (View More) Files: The Case of the Mysterious Red Light. Lesson objectives supported by the video, additional resources, teaching tips and an answer sheet are included in the teacher's guide. (View Less)

This is an activity about the detection of magnetic storms. Learners will plot the locations of magnetic observatories in Canada and analyze the magnetic intensity for each station, looking for the difference between stable magnetic activity and the... (View More) largest difference in change in magnetic activity and identifying any patterns of change. This is the thirteenth activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)

This is an activity about the mathematics of oscillation. Using data obtained in ninth and tenth activities in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide, learners will plot the formula... (View More) X(t)=X(0)cos(ft) or X(t)=X(0)sin(ft), depending on the data obtained during the oscillation experiments. Then, the mathematical model for oscillation is further refined by including damping. This is the eleventh activity in the guide and requires prior use and construction of a soda bottle magnetometer. (View Less)

This is an activity about the magnetic deflection. Learners will observe and measure the deflection that an iron mass causes in a soda bottle magnetometer and plot the data. The data should show the inverse-square cube law of change in the magnetic... (View More) field. This is the twelfth activity in the guide and requires prior use and construction of a soda bottle magnetometer, as well as a six to ten pound container of iron nails (or an equivalent iron mass). (View Less)