## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **31-40** of **58**

This learning activity engages students in measurement of pH in water and soil samples, plants and other natural materials. By mixing different substances, they observe how pH changes, and become familiar with the pH of common household products.... (View More) Through discussion, they learn how pH can be modified in the environment. (View Less)

Materials Cost: $1 - $5 per group of students

This interactive, online module allows students to discover the velocity needed to escape the Earth's gravitational pull. By completing this activity, students discover how mathematics can be used to find escape velocity. Students may complete this... (View More) activity independently or in small groups. Detailed teacher pages, identified as Teaching Tips on the title page, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. This module is a subsection of "Is a Black Hole Really A Hole?" It is within the online exploration "No Escape: The Truth about Black Holes" available on the Amazing Space website. (View Less)

In this activity, students solve exponential equations where the unknown is contained in the exponent. Students learn that taking base-10 or base-2 logs pulls down the exponent, allowing the unknown to be isolated and solved. This activity is... (View More) activity C3 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students use their Log Tapes as a reference for ordered pairs, and graph positive numbers as a function of their base-10 logarithms. They extend each plotted point to the vertical axis, thereby generating a logarithmic scale that... (View More) cuts and folds into an improvised slide rule. This is activity E1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

This article is about the isoperimetric theorem. It states the theorem, explains its history and uses examples and exercises to demonstrate it. The resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created... (View More) by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This is an activity about the mathematics of oscillation. Using data obtained in ninth and tenth activities in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide, learners will plot the formula... (View More) X(t)=X(0)cos(ft) or X(t)=X(0)sin(ft), depending on the data obtained during the oscillation experiments. Then, the mathematical model for oscillation is further refined by including damping. This is the eleventh activity in the guide and requires prior use and construction of a soda bottle magnetometer. (View Less)

This is an activity about the magnetic deflection. Learners will observe and measure the deflection that an iron mass causes in a soda bottle magnetometer and plot the data. The data should show the inverse-square cube law of change in the magnetic... (View More) field. This is the twelfth activity in the guide and requires prior use and construction of a soda bottle magnetometer, as well as a six to ten pound container of iron nails (or an equivalent iron mass). (View Less)

This is an activity about oscillation. Learners will observe, time, and graph the data of the side to side motion of the mirror used in the soda bottle magnetometer activity to determine the mirror's oscillation amplitude. This activity requires... (View More) prior construction and experience in use of a soda bottle magnetometer, which is the eighth activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. This is the tenth activity in the guide. (View Less)

This is an activity about oscillation. Learners will observe, time, and graph the data of the side to side motion of the mirror used in the soda bottle magnetometer activity to determine the mirror's oscillation period. This activity requires prior... (View More) construction and experience in use of a soda bottle magnetometer, which is the eighth activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. This is the ninth activity in the guide. (View Less)

This story can be used to teach that results must be checked against known facts to see if they're reasonable. It is designed as a follow up to "The Fall of the Ruler." This resource is from PUMAS - Practical Uses of Math and Science - a collection... (View More) of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)