## You are here

Home ›## Narrow Search

**Earth and space science**

**Engineering and technology**

**Mathematics**

Now showing results **1-10** of **17**

This is an activity associated with activities during Solar Week, a twice-yearly event in March and October during which classrooms are able to interact with scientists studying the Sun. Outside of Solar Week, information, activities, and resources... (View More) are archived and available online at any time. Learners will use SOHO spacecraft images of a coronal mass ejection and tracing paper to measure and then calculate the speed of the coronal mass ejection. This activity is scheduled to occur during Wednesday of Solar Week. (View Less)

This is an activity about area and volume. Learners will use fabrication software to determine the optimal size of a satellite which can fit within a given rocket cylinder. To complete this activity, fabrication software is required (an example is... (View More) suggested in the lesson). This is the sixth activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)

This is an activity about satellite design. Learners will create a satellite model to determine which shape will provide a steady minimum current output from solar panels, given a fixed position light source. After, as a group, they will assess... (View More) whether their satellite model would work in real life and how their actions were similar to what engineers do. This is the fifth activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide curriculum. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)

This is an activity about using models to solve a problem. Learners will use a previously constructed model of the MMS satellite to determine if the centrifugal force of the rotating MMS model is sufficient to push the satellite's antennae outward,... (View More) simulating the deployment of the satellites after launch. Then, learners will determine the minimum rotational speed needed for the satellite to successfully deploy the antennae. This is the seventh activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)

This is a set of one-page problems about the scale of objects in images returned by spacecraft. Learners will measure scaled drawings using high-resolution images of the lunar and martian surfaces. Options are presented so that students may learn... (View More) about the Lunar Reconnaissance Orbiter (LRO) mission through a NASA press release or by viewing a NASA eClips™ video [4 min]. Common Core State Standards for Mathematics and English Language Arts are identified. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school. (View Less)

This is an online set of information about astronomical alignments of ancient structures and buildings. Learners will read background information about the alignments to the Sun in such structures as the Great Pyramid, Chichen Itza, and others.... (View More) Next, the site contains 10 short problem sets that involve a variety of math skills, including determining the scale of a photo, measuring and drawing angles, plotting data on a graph, and creating an equation to match a set of data. Each set of problems is contained on one page and all of the sets utilize real-world problems relating to astronomical alignments of ancient structures. Each problem set is flexible and can be used on its own, together with other sets, or together with related lessons and materials selected by the educator. This was originally included as a folder insert for the 2010 Sun-Earth Day. (View Less)

Learners will build an open spectrograph to calculate the angle the light is transmitted through a holographic diffraction grating. After finding the desired angles, the students will design their own spectrograph using the information learned. The... (View More) activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)

This is an activity about the period of the Sun’s rotation. Learners will select images of the Sun from the SOHO spacecraft image archive. Next, they will calculate an image scale for the selected solar images. Then, they will use it to help... (View More) determine the actual speed of sunspots based on measurements of their motion in the selected Sun images and, finally, determine the period of the Sun's rotation. This activity requires access to the internet to obtain images from the SOHO image archive. This is Activity 3 of the Space Weather Forecast curriculum. (View Less)

This is an activity about measurement. Learners will label key points and features on a rectangular equal-area map and measure the distance between pairs of points in order to calculate the actual physical distance on the Sun that the point pairs... (View More) represent. This is Activity 5 of the Space Weather Forecast curriculum. (View Less)

This is an activity about cause and effect. Learners will calculate the approximate travel time of each solar wind event identified in the previous activity in this set to estimate the time at which the disturbance would have left the Sun. Then,... (View More) they will examine solar images in an attempt to identify the event on the Sun that may have caused the specific solar wind episode. This is Activity 12 of the Space Weather Forecast curriculum. (View Less)