You are here
Home ›Narrow Search
Now showing results 11-20 of 28
In this kinesthetic activity, students will demonstrate how two spacecraft are able to document a space weather event across the Van Allen radiation belts better than one spacecraft can. Students will graph the data collected by one spacecraft and... (View More) by two spacecraft during a space weather event; compare and contrast the graphical data from one spacecraft and from two spacecraft collected during a space weather event; and explain that space weather events can change from time-to-time and place-to-place across the Van Allen radiation belts, which is why it is helpful to observe them from two spacecraft simultaneously. Includes background science information, student handouts and data collection sheets, teacher answer key, and suggested extensions and adaptations for students with vision or hearing impairments. (View Less)
This is a lesson about the solar wind, Earth's magnetosphere, and the Moon. Participants will work in groups of two or three to build a model of the Sun-Earth-Moon system. They will use the model to demonstrate that the Earth is protected from... (View More) particles streaming out of the Sun, called the solar wind, by a magnetic shield called the magnetosphere, and that the Moon is periodically protected from these particles as it moves in its orbit around the Earth. Participants will also learn that the NASA ARTEMIS mission is a pair of satellites orbiting the Moon that measure the intensity of solar particles streaming from the Sun. (View Less)
This is an activity about image comparison. Learners will analyze and compare images taken by the Solar Dynamics Observatory. They will match four magnetic solar images, or magnetograms, to their corresponding extreme ultraviolet, or EUV, light... (View More) images by studying solar features in the images. At the end, they will recognize that areas of high magnetic activity on the Sun correspond to extreme solar activity. (View Less)
This is a collection of outreach resources about the Sun that are meant to be used in informal education settings. This toolkit was originally designed for NASA Night Sky Network member clubs and the Astronomical Society of the Pacific's Astronomy... (View More) from the Ground Up network of museum and science center educators. The toolkit includes background information about the Sun, magnetic fields of the Earth and Sun, and space weather, activity suggestions, and detailed activity scripts. The themes of this toolkit address both the constant nature of the Sun as a reliable source of energy and the dynamic nature of the Sun due to its changing magnetic fields. The activities and related materials in this collection include The Sun in a Different Light - Observing the Sun, Explore the Sun cards, Magnetic Connection, the Space Weather PowerPoint, Protection from Ultraviolet, and Where Does the Energy Come From cards. These activities can be done separately or as a group as part of an informal education event. Institutions that are not part of the Night Sky Network will need to acquire the various materials required for each activity. (View Less)
This is an activity that compares the magnetic field of the Earth to the complex magnetic field of the Sun. Using images of the Earth and Sun that have magnets attached in appropriate orientations, learners will use a handheld magnetic field... (View More) detector to observe the magnetic field of the Earth and compare it to that of the Sun, especially in sunspot areas. For each group of students, this activity requires use of a handheld magnetic field detector, such as a Magnaprobe or a similar device, a bar magnet, and ten small disc magnets. (View Less)
Materials Cost: Over $20 per group of students
This is an activity about image comparison. Learners will analyze and compare two sets of images of the Sun taken by instruments on the Solar Dynamics Observatory spacecraft. With Set 1, they will observe the Sun in both a highly active and a... (View More) minimally active state, and be able to detect active regions and loops on the Sun by comparing the two images. With Set 2, they will identify areas of high magnetic activity on a magnetogram image and recognize that these areas correspond to highly active regions on the Sun. (View Less)
Dancing Lights: Exploring the Aurora through Art and Writing is a science-in-literacy program about the aurora. Students in grades 3-5 write and illustrate their perceptions, ideas, and facts pertaining to auroral science. This short educator... (View More) background primer was based upon interactions with teachers during Dancing Lights workshops and is meant as a quick guide to the science of the aurora. (View Less)
This is a challenge-based activity set designed to have students explore and research the Magnetospheric MultiScale Mission (MMS). Students will explore the purpose and relevance of the mission as well as the scientific methodologies. Activities... (View More) include application of the scientific method, problem solving strategies, research, collaboration, critical thinking and communication. Links to resources and appropriate web 2.0 tools are provided through a shared livebinder. (View Less)
This is an activity about magnetism. In this activity, polystyrene spheres and several strong neodymium magnets are used to represent the Sun and Earth and their distinct magnetic fields. Participants construct and use a field detector to predict... (View More) where the magnetic fields are on the Sun and Earth, and use field bits, which is the term used in the lesson plan, made from the closed staples to form loops and trace the invisible magnetic fields of the Sun and Earth. The activity is designed to be used in an informal public outreach setting, for example as a stand-alone station in a family science day event. It can also be modified for use as a simple classroom demonstration. There are background information sheets provided that can be printed to go along with the activity station. This activity requires two polystyrene spheres, 8 neodymium magnets, epoxy adhesive, wire clippers, needle nose pliers, and acrylic paints, along with other easily obtained materials. (View Less)
In this activity about magnetic fields and their relation to the Sun, learners will simulate sunspots by using iron filings to show magnetic fields around a bar or cow magnet, and draw the magnetic field surrounding two dipole magnets, both in... (View More) parallel and perpendicular alignments. Finally, learners examine images of sunspots to relate their magnetic field drawings and observations to what is seen on the Sun. (View Less)